Θα διαιρέσουμε τα δεδομένα με το 100 για να τα προετοιμάσουμε για την πρόβλεψη. We will divide the data by 100 to prepare it for prediction.
data = [
[7, 8, 9, 11, 14, 15, 17, 23, 24, 30, 32, 33, 35, 51, 52, 56, 59, 64, 66, 74],
[16, 20, 21, 28, 29, 33, 34, 36, 37, 38, 41, 44, 52, 63, 66, 71, 72, 74, 77, 80],
[2, 11, 13, 22, 23, 27, 29, 30, 39, 42, 43, 50, 55, 62, 64, 68, 69, 71, 74, 75],
[1, 3, 6, 8, 12, 13, 17, 19, 21, 26, 30, 31, 34, 41, 44, 45, 53, 58, 59, 60],
[2, 5, 9, 10, 11, 13, 14, 17, 21, 24, 29, 30, 31, 37, 51, 55, 56, 63, 66, 80],
[10, 12, 21, 23, 24, 34, 37, 41, 49, 50, 51, 56, 59, 60, 68, 71, 73, 76, 79, 80],
[1, 7, 9, 11, 13, 17, 23, 26, 28, 36, 38, 39, 47, 50, 63, 68, 73, 74, 75, 77],
[1, 2, 8, 11, 20, 24, 28, 30, 32, 34, 38, 43, 44, 47, 51, 58, 60, 64, 72, 76],
[3, 4, 14, 19, 21, 23, 27, 29, 34, 35, 38, 48, 51, 55, 56, 60, 61, 70, 74, 76],
[9, 10, 13, 14, 15, 17, 24, 26, 29, 32, 35, 40, 48, 55, 60, 61, 70, 76, 77, 80],
]
divided_data = [[num / 100 for num in sublist] for sublist in data]
for sublist in divided_data:
line = ", ".join(f"{value:.2f}" for value in sublist)
print(f"[{line}],")Αποτελέσματα:
Result:
Result:
Έχω διαίρεσει τα δεδομένα του ΚΙΝΟ με το 100, προετοιμάζοντάς τα για πιθανή χρήση σε μοντέλα πρόβλεψης ή άλλες αναλυτικές διαδικασίες. I have divided the KINO data by 100, preparing it for potential use in predictive models or other analytical processes.
Αυτή η μετατροπή βοηθάει στην κανονικοποίηση των δεδομένων, κάνοντας τις τιμές να κυμαίνονται μεταξύ 0 και 1, πράγμα που είναι συχνά ωφέλιμο στην επεξεργασία δεδομένων και την εφαρμογή στατιστικών και μαθηματικών μοντέλων. This transformation helps normalize the data, making the values range between 0 and 1, which is often beneficial in data processing and the application of statistical and mathematical models.
[0.07, 0.08, 0.09, 0.11, 0.14, 0.15, 0.17, 0.23, 0.24, 0.30, 0.32, 0.33, 0.35, 0.51, 0.52, 0.56, 0.59, 0.64, 0.66, 0.74],[0.16, 0.20, 0.21, 0.28, 0.29, 0.33, 0.34, 0.36, 0.37, 0.38, 0.41, 0.44, 0.52,0.63, 0.66, 0.71, 0.72, 0.74, 0.77, 0.80],
[0.02, 0.11, 0.13, 0.22, 0.23, 0.27, 0.29, 0.30, 0.39, 0.42, 0.43, 0.50, 0.55, 0.62, 0.64, 0.68, 0.69, 0.71, 0.74, 0.75],[0.01, 0.03, 0.06, 0.08, 0.12, 0.13, 0.17, 0.19, 0.21, 0.26, 0.30, 0.31, 0.34, 0.41, 0.44, 0.45, 0.53, 0.58, 0.59, 0.60],[0.02, 0.05, 0.09, 0.10, 0.11, 0.13, 0.14, 0.17, 0.21, 0.24, 0.29, 0.30, 0.31, 0.37, 0.51, 0.55, 0.56, 0.63, 0.66, 0.80],[0.10, 0.12, 0.21, 0.23, 0.24, 0.34, 0.37, 0.41, 0.49, 0.50, 0.51, 0.56, 0.59, 0.60, 0.68, 0.71, 0.73, 0.76, 0.79, 0.80],[0.01, 0.07, 0.09, 0.11, 0.13, 0.17, 0.23, 0.26, 0.28, 0.36, 0.38, 0.39, 0.47, 0.50, 0.63, 0.68, 0.73, 0.74, 0.75, 0.77],[0.01, 0.02, 0.08, 0.11, 0.20, 0.24, 0.28, 0.30, 0.32, 0.34, 0.38, 0.43, 0.44, 0.47, 0.51, 0.58, 0.60, 0.64, 0.72, 0.76],[0.03, 0.04, 0.14, 0.19, 0.21, 0.23, 0.27, 0.29, 0.34, 0.35, 0.38, 0.48, 0.51,
0.55, 0.56, 0.60, 0.61, 0.70, 0.74, 0.76],[0.09, 0.10, 0.13, 0.14, 0.15, 0.17, 0.24, 0.26, 0.29, 0.32, 0.35, 0.40, 0.48, 0.55, 0.60, 0.61, 0.70, 0.76, 0.77, 0.80],
