Hello! How can I help you?
import os
os.system('cls' if os.name == 'nt' else 'clear')
import cv2
import numpy as np
import pygame
import time
import pyttsx3
import threading
import speech_recognition as sr
from PIL import Image, ImageSequence
import io
import base64
import pygetwindow as gw
import pyautogui
import time
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token # Χρήση του eos_token ως pad_token
gpt2_model = GPT2LMHeadModel.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
gpt2_model.to(device)
def generate_text(prompt, max_new_tokens=50):
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
input_ids = inputs.input_ids.to(device)
attention_mask = inputs.attention_mask.to(device)
output = gpt2_model.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
num_return_sequences=1,
no_repeat_ngram_size=1,
do_sample=True,
top_k=50,
top_p=0.90,
temperature=0.8,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
raw_text = tokenizer.decode(output[0], skip_special_tokens=True)
lines = raw_text.split("\n")
filtered_lines = []
for line in lines:
if line.strip().startswith("User:") or line.strip().startswith("AI:"):
continue
filtered_lines.append(line)
final_text = " ".join(filtered_lines).strip()
return final_text
def build_prompt(conversation_history, new_user_input):
system_message = (
"You are beautiful.\n\n"
)
dialogue = ""
for i, msg in enumerate(conversation_history):
role = "User" if i % 2 == 0 else "AI"
dialogue += f"{role}: {msg}\n"
dialogue += f"User: {new_user_input}\nAI:"
return system_message + dialogue
recognizer = sr.Recognizer()
mic = sr.Microphone()
def listen():
with mic as source:
print("🎤 Speak now...")
recognizer.adjust_for_ambient_noise(source, duration=1)
try:
audio = recognizer.listen(source, timeout=5)
print("✅ Audio Captured!")
except sr.WaitTimeoutError:
print("⏳ No speech detected. Try again.")
return None
try:
text = recognizer.recognize_google(audio, language="en-US")
print(f"✅ Recognition: {text}")
return text
except sr.UnknownValueError:
print("🤖 Could not understand.")
except sr.RequestError:
print("❌ Connection error.")
return None
engine = pyttsx3.init()
engine_lock = threading.Lock()
voices = engine.getProperty('voices')
female_voice_id = None
for voice in voices:
name_lower = voice.name.lower()
if "female" in name_lower or "zira" in name_lower:
female_voice_id = voice.id
break
if female_voice_id:
engine.setProperty('voice', female_voice_id)
else:
print("❌ No female-like voice found. Using default.")
def speak(text):
with engine_lock:
engine.say(text)
engine.runAndWait()
def create_avatar_animation(image_path):
if not os.path.exists(image_path):
print(f"❌ File {image_path} not found!")
exit()
gif = Image.open(image_path)
frames = [
pygame.image.fromstring(frame.convert("RGBA").tobytes(), frame.size, "RGBA")
for frame in ImageSequence.Iterator(gif)
]
return frames
image_path = r"C:\Users\tsifa\Desktop\avatar 111.webp"
avatar_frames = create_avatar_animation(image_path)
frame_index = 0
pygame.init()
pygame.font.init()
window_open = False
running = True
avatar_text = "Hello! How can I help you?"
def bring_window_to_front():
time.sleep(0.5) # Δίνουμε λίγο χρόνο στο Pygame να δημιουργήσει το παράθυρο
win = gw.getWindowsWithTitle("AI Assistant") # Βρίσκουμε το παράθυρο
if win:
win[0].activate() # Το ενεργοποιούμε
pyautogui.click(win[0].left + 10, win[0].top + 10) # Προαιρετικό κλικ
def update_avatar_text(new_text):
global avatar_text
avatar_text = new_text
pygame.event.post(pygame.event.Event(pygame.USEREVENT))
def show_avatar():
global window_open, running, frame_index, avatar_text
if window_open:
return
window_open = True
screen = pygame.display.set_mode((500, 500))
pygame.display.set_caption("AI Assistant")
font = pygame.font.SysFont("Arial", 24)
bring_window_to_front()
while running:
screen.fill((0, 0, 0))
text_surface = font.render(avatar_text, True, (155, 155, 155))
screen.blit(text_surface, (50, 450))
current_frame = avatar_frames[frame_index]
screen.blit(pygame.transform.scale(current_frame, (400, 400)), (50, 50))
pygame.display.update()
frame_index = (frame_index + 1) % len(avatar_frames)
time.sleep(0.1)
for event in pygame.event.get():
if event.type == pygame.QUIT:
print("🛑 Exiting program...")
running = False
pygame.quit()
os._exit(0)
def conversation_loop():
global running
conversation_context = []
# Αρχικό μήνυμα
initial_message = "Hello! How can I help you?"
print(f"🤖 AI: {initial_message}")
update_avatar_text(initial_message)
speak(initial_message)
while running:
print("🎤 Waiting for user input...")
user_input = listen()
if user_input is None:
print("🔄 No input detected. Listening again...")
continue
if user_input.lower() in ["quit", "exit", "stop"]:
print("🛑 Exiting...")
running = False
pygame.event.post(pygame.event.Event(pygame.QUIT))
break
prompt = build_prompt(conversation_context, user_input)
ai_response = generate_text(prompt)
print(f"📝 User: {user_input}")
print(f"🤖 AI: {ai_response}")
update_avatar_text(ai_response)
speak(ai_response)
conversation_context.append(user_input)
conversation_context.append(ai_response)
if len(conversation_context) > 6:
conversation_context = conversation_context[-6:]
def detect_motion(threshold=5000):
cap = cv2.VideoCapture(0)
time.sleep(2)
ret, frame1 = cap.read()
ret, frame2 = cap.read()
print("🔍 Waiting for motion...")
motion_detected = False
while True:
diff = cv2.absdiff(frame1, frame2)
gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
_, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY)
dilated = cv2.dilate(thresh, None, iterations=3)
contours, _ = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
total_area = sum(cv2.contourArea(contour) for contour in contours)
if total_area > threshold:
print("🚨 Motion detected! Starting program...")
motion_detected = True
break
frame1 = frame2
ret, frame2 = cap.read()
if not ret:
break
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
return motion_detected
if detect_motion():
conversation_thread = threading.Thread(target=conversation_loop)
conversation_thread.start()
show_avatar()
conversation_thread.join()
else:
print("❌ Motion detection failed or interrupted.")