Θα διαιρέσουμε τα δεδομένα με το 100 για να τα προετοιμάσουμε για την πρόβλεψη. We will divide the data by 100 to prepare it for prediction.
data = [
[22, 25, 31, 8, 10],
[9, 16, 14, 27, 34],
[12, 19, 23, 27, 13],
[4, 21, 18, 25, 31],
[23, 10, 35, 13, 32],
[8, 20, 15, 26, 10],
[19, 24, 17, 8, 2],
[17, 30, 21, 3, 9],
[24, 17, 31, 21, 13],
[27, 11, 31, 5, 14],
[27, 6, 16, 33, 22],
[18, 16, 28, 34, 17],
[13, 23, 8, 31, 12],
[28, 6, 17, 1, 18],
[30, 33, 19, 13, 20],
[7, 6, 26, 11, 34],
[2, 19, 1, 12, 10],
[8, 21, 15, 19, 9],
[22, 4, 29, 8, 24],
[16, 1, 20, 7, 31],
[6, 27, 3, 30, 10],
[10, 34, 26, 24, 23],
[20, 18, 34, 11, 2],
[3, 10, 26, 35, 7],
[24, 14, 35, 1, 21],
[19, 17, 26, 30, 24],
[29, 18, 26, 14, 2],
[13, 22, 14, 21, 7],
[5, 16, 1, 18, 28],
[34, 18, 31, 28, 27],
[20, 8, 4, 21, 15],
[25, 24, 6, 5, 15],
[35, 29, 16, 13, 27],
[22, 27, 9, 10, 17],
[16, 17, 34, 32, 2],
[7, 22, 8, 3, 29],
[21, 1, 19, 6, 18],
[9, 14, 26, 18, 3],
[1, 23, 33, 34, 3],
[2, 24, 30, 5, 12],
[2, 8, 9, 17, 19],
[9, 17, 15, 27, 23],
[5, 4, 35, 27, 20],
[15, 19, 26, 4, 16],
[23, 4, 32, 29, 18],
[29, 27, 10, 13, 22],
[11, 25, 22, 1, 6],
[33, 2, 8, 1, 22],
[19, 6, 5, 18, 7],
[2, 26, 14, 30, 15],
[22, 17, 14, 33, 11],
[30, 24, 8, 12, 33],
[2, 19, 12, 4, 1],
[3, 9, 17, 2, 4],
[35, 3, 11, 18, 20],
[7, 14, 9, 21, 18],
[7, 4, 32, 12, 35],
[25, 13, 7, 18, 31],
[20, 34, 29, 13, 11],
[22, 23, 5, 13, 15],
[30, 32, 9, 26, 20],
[19, 22, 9, 35, 12],
[31, 27, 2, 29, 7],
[34, 26, 2, 12, 6],
[13, 3, 18, 16, 10],
[11, 9, 5, 4, 13],
[12, 29, 11, 34, 6],
[23, 15, 35, 12, 24],
[25, 27, 29, 35, 2],
[25, 4, 31, 35, 23],
]
# Αντιστροφή της λίστας
data.reverse()
# Εκτύπωση των ταξινομημένων λιστών με scaler / 100
for sublist in data:
print('[', end='')
print(*[x / 100 for x in sublist], sep=', ', end='],\n')ΑΠΟΤΕΛΕΣΜΑΤΑ
[0.15, 0.21, 0.13, 0.17, 0.14],
[0.26, 0.07, 0.1, 0.33, 0.04],
[0.35, 0.04, 0.02, 0.1, 0.05],
[0.11, 0.25, 0.07, 0.03, 0.05],
[0.33, 0.03, 0.24, 0.2, 0.29],
[0.09, 0.18, 0.15, 0.33, 0.29],
[0.16, 0.21, 0.05, 0.07, 0.19],
[0.35, 0.22, 0.28, 0.01, 0.29],
[0.13, 0.02, 0.04, 0.22, 0.09],
[0.08, 0.1, 0.28, 0.07, 0.22],
[0.15, 0.02, 0.08, 0.06, 0.13],
[0.34, 0.25, 0.04, 0.22, 0.26],
[0.3, 0.27, 0.16, 0.29, 0.24],
[0.1, 0.28, 0.32, 0.23, 0.31],
[0.24, 0.01, 0.32, 0.16, 0.35],
[0.19, 0.09, 0.31, 0.06, 0.01],
[0.04, 0.22, 0.02, 0.26, 0.06],
[0.2, 0.05, 0.02, 0.01, 0.33],
[0.13, 0.01, 0.14, 0.07, 0.22],
[0.24, 0.23, 0.12, 0.27, 0.33],
[0.26, 0.07, 0.33, 0.23, 0.03],
[0.19, 0.06, 0.05, 0.18, 0.07],
[0.33, 0.02, 0.08, 0.01, 0.22],
[0.11, 0.25, 0.22, 0.01, 0.06],
[0.29, 0.27, 0.1, 0.13, 0.22],
[0.23, 0.04, 0.32, 0.29, 0.18],
[0.15, 0.19, 0.26, 0.04, 0.16],
[0.05, 0.04, 0.35, 0.27, 0.2],
[0.09, 0.17, 0.15, 0.27, 0.23],
[0.02, 0.08, 0.09, 0.17, 0.19],
[0.02, 0.24, 0.3, 0.05, 0.12],
[0.01, 0.23, 0.33, 0.34, 0.03],
[0.09, 0.14, 0.26, 0.18, 0.03],
[0.21, 0.01, 0.19, 0.06, 0.18],
[0.07, 0.22, 0.08, 0.03, 0.29],
[0.16, 0.17, 0.34, 0.32, 0.02],
[0.22, 0.27, 0.09, 0.1, 0.17],
[0.35, 0.29, 0.16, 0.13, 0.27],
[0.25, 0.24, 0.06, 0.05, 0.15],
[0.2, 0.08, 0.04, 0.21, 0.15],
[0.34, 0.18, 0.31, 0.28, 0.27],
[0.05, 0.16, 0.01, 0.18, 0.28],
[0.13, 0.22, 0.14, 0.21, 0.07],
[0.29, 0.18, 0.26, 0.14, 0.02],
[0.19, 0.17, 0.26, 0.3, 0.24],
[0.24, 0.14, 0.35, 0.01, 0.21],
[0.03, 0.1, 0.26, 0.35, 0.07],
[0.2, 0.18, 0.34, 0.11, 0.02],
[0.1, 0.34, 0.26, 0.24, 0.23],
[0.06, 0.27, 0.03, 0.3, 0.1],
[0.16, 0.01, 0.2, 0.07, 0.31],
[0.22, 0.04, 0.29, 0.08, 0.24],
[0.08, 0.21, 0.15, 0.19, 0.09],
[0.02, 0.19, 0.01, 0.12, 0.1],
[0.07, 0.06, 0.26, 0.11, 0.34],
[0.3, 0.33, 0.19, 0.13, 0.2],
[0.28, 0.06, 0.17, 0.01, 0.18],
[0.13, 0.23, 0.08, 0.31, 0.12],
[0.18, 0.16, 0.28, 0.34, 0.17],
[0.06, 0.21, 0.3, 0.05, 0.17],
[0.12, 0.16, 0.19, 0.28, 0.29],
[0.35, 0.02, 0.04, 0.29, 0.07],
[0.07, 0.11, 0.22, 0.27, 0.24],
[0.18, 0.35, 0.26, 0.25, 0.11],
[0.31, 0.3, 0.13, 0.04, 0.33],
[0.12, 0.29, 0.02, 0.18, 0.03],
[0.32, 0.2, 0.14, 0.11, 0.05],
[0.17, 0.05, 0.22, 0.28, 0.01],
[0.34, 0.26, 0.3, 0.19, 0.22],
[0.27, 0.06, 0.16, 0.33, 0.22],
[0.27, 0.11, 0.31, 0.05, 0.14],
[0.24, 0.17, 0.31, 0.21, 0.13],
[0.17, 0.3, 0.21, 0.03, 0.09],
[0.19, 0.24, 0.17, 0.08, 0.02],
[0.08, 0.2, 0.15, 0.26, 0.1],
[0.23, 0.1, 0.35, 0.13, 0.32],
[0.04, 0.21, 0.18, 0.25, 0.31],
[0.12, 0.19, 0.23, 0.27, 0.13],
[0.09, 0.16, 0.14, 0.27, 0.34],
[0.22, 0.25, 0.31, 0.08, 0.1],Έχω διαίρεσει τα δεδομένα του EXTRA 5 με το 100, προετοιμάζοντάς τα για πιθανή χρήση σε μοντέλα πρόβλεψης ή άλλες αναλυτικές διαδικασίες.
Αυτή η μετατροπή βοηθάει στην κανονικοποίηση των δεδομένων, κάνοντας τις τιμές να κυμαίνονται μεταξύ 0 και 1, πράγμα που είναι συχνά ωφέλιμο στην επεξεργασία δεδομένων και την εφαρμογή στατιστικών και μαθηματικών μοντέλων.
Αυτή η μετατροπή βοηθάει στην κανονικοποίηση των δεδομένων, κάνοντας τις τιμές να κυμαίνονται μεταξύ 0 και 1, πράγμα που είναι συχνά ωφέλιμο στην επεξεργασία δεδομένων και την εφαρμογή στατιστικών και μαθηματικών μοντέλων.
